Efficient Query Processing on the Relational Quadtree
نویسندگان
چکیده
Relational index structures, as for instance the Relational Interval Tree, the Relational R-Tree, or the Linear Quadtree, support efficient processing of queries on top of existing object-relational database systems. Furthermore, there exist effective and efficient models to estimate the selectivity and the I/O cost in order to guide the cost-based optimizer whether and how to include these index structures into the execution plan. By design, the models immediately fit to common extensible indexing/optimization frameworks, and their implementations exploit the built-in statistics facilities of the database server. In this paper, we show how these statistics can also be used for accelerating geo-spatial queries using the relational quadtree by reducing the number of generated join partners which results in less logical reads and consequently improves the overall runtime. We cut down on the number of join partners by grouping different join partners together according to a statistic driven grouping algorithm. Our experiments on an Oracle9i database yield an average speed-up between 30% and 300% for spatial selection queries on the Relational Quadtree.
منابع مشابه
Acceleration of Relational Index Structures Based on Statistics
Relational index structures, as for instance the Relational Interval Tree, the Relational R-Tree, or the Linear Quadtree, support efficient processing of queries on top of existing object-relational database systems. Furthermore, there exist effective and efficient models to estimate the selectivity and the I/O cost in order to guide the cost-based optimizer whether and how to include these ind...
متن کاملStatistic Driven Acceleration of Object-Relational Space-Partitioning Index Structures
Relational index structures, as for instance the Relational Interval Tree or the Linear Quadtree, support efficient processing of queries on top of existing object-relational database systems. Furthermore, there exist effective and efficient models to estimate the selectivity and the I/O cost in order to guide the cost-based optimizer whether and how to include these index structures into the e...
متن کاملSelf-tuning UDF Cost Modeling Using the Memory-Limited Quadtree
Query optimizers in object-relational database management systems require users to provide the execution cost models of user-defined functions(UDFs). Despite this need, however, there has been little work done to provide such a model. Furthermore, none of the existing work is self-tuning and, therefore, cannot adapt to changing UDF execution patterns. This paper addresses this problem by introd...
متن کاملRelational Databases Query Optimization using Hybrid Evolutionary Algorithm
Optimizing the database queries is one of hard research problems. Exhaustive search techniques like dynamic programming is suitable for queries with a few relations, but by increasing the number of relations in query, much use of memory and processing is needed, and the use of these methods is not suitable, so we have to use random and evolutionary methods. The use of evolutionary methods, beca...
متن کاملSpatial Data Management In Database Systems: Research Directions
Realms: A foundation for spatial data types in database systems p. 14 A canonical model for a class of areal spatial objects p. 36 Strong integration of spatial domains and operators in a relational database system p. 53 The transformation technique for spatial objects revisited p. 73 A paging scheme for pointer-based quadtrees p. 89 A hierarchical spatial index for cell complexes p. 105 On opt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003